Towards Smart Machine Tools

A NIST Perspective of Research Opportunities

Greg Vogl
Intelligent Systems Division
Engineering Laboratory
National Institute of Standards and Technology (NIST)

Official contribution of the National Institute of Standards and Technology (NIST); not subject to copyright in the United States. Certain commercial products, some of which are either registered or trademarked, are identified in this presentation in order to adequately specify certain procedures. In no case does such identification imply recommendation or endorsement by NIST, nor does it imply that the materials, equipment, or software identified are necessarily the best available for the purpose.
NIST → Economic Growth

- NIST within U.S. Department of Commerce
- NIST promotes U.S. innovation by advancing measurement science, standards, and technology
- 6,100 Employees/Associates
- NIST partners with about 1,300 manufacturing specialists through 400 manufacturing extensions
Manufacturing = Economic Growth

- Manufacturing = 12.5M U.S. jobs & about 60% exports
- World machine tool consumption ↓4% in 2016, but U.S. machine tool spending ↑18% in 2016 (to $8.7B) over 2015

Modern Machine Shop, 2015 Capital Spending Survey & Forecast

U.S. Manufacturing Jobs Per Year

U.S. Bureau of Labor Statistics
Machine Tools are Vital for Production

• 100s of machine tools used in plants to mill precision parts
• 3+ axis motion
Problem = Unplanned Downtime

- Faults/failures → 10s of $Billions per year (> new machines!)
- Machine tool degradation causes performance changes and unplanned downtime

Machinery Lubrication (2004), Wear in Rolling Element Bearings and Gears

Reliabilityweb.com (2018), Lubrication FMEA: The Big Picture
Why Not Measure Health?

• Major manufacturers say routine tracking of performance is **too expensive**

• Accuracy a pro, but setup and operation time/cost a con

 • Offline
 • Lack of periodic data
 • Expensive

Laser \rightarrow 1-2 days

Ballbar \rightarrow 1 hour

Cap probes \rightarrow hours

IBS Precision Engineering

Renishaw

API
GOAL: Smart Machine Tools

- **Industry challenge:** “Machine health in 5 min?”
- On-machine measurement science to diagnose performance and root-causes
 - **Offline** Online
 - Lack of periodic data Data-rich
 - Expensive Inexpensive

Linear Axis Health Tracking

[How?]

Spindle Health Tracking

[How?]
GOAL: **Smart Machine Tools**

- Make machine tools **self-aware** with diagnostics of performance & root causes
- Predict part errors based on health tracking & optimize asset management

Machine #1
- Axis 1
 - 15 µm range
 - Spalling detected
- Spindle
- Axis 2
 - 70 µrad range

Optimum Machine: #5
IMU for Linear Axis Monitoring

Data Fusion with Accelerometer (A) and Rate Gyroscope (RG) Data

Translational Motion

Angular Motion

IMU Data Collection

- Each run uses 3 different axis speeds
- IMU can live within machine tool for usage with no setup
NIST Linear Axis Testbed

- Testbed to study IMU-based method & diagnostics / root-cause analysis
NIST Linear Axis Testbed

- Testbed to study IMU-based method & diagnostics / root-cause analysis

Metric vs. degradation stage

- IMU
- REF
Root-Cause Analysis for Rail Wear

• Find root cause of changing error motions
• 4 possible physical causes: inner/outer raceway damage on Rail 1 or 2
• Root-cause analysis correctly identified spalling on inner raceway of Rail 1
IMU for Linear Axis Health Tracking

- Research Opportunities to use IMU for Comprehensive Root-Cause Analysis

- Error Motion Metrics vs. Time
- Error Motion Changes
 - Locations and Magnitudes of Degradation
- Root-Cause Analysis
 - Sources of Error → Trucks, Rails, Lead Screw, Ball Nut, and/or Controlled Motor
GOAL: Smart Machine Tools

- **Industry challenge**: “Machine health in 5 min?”
- On-machine measurement science to diagnose performance and root-causes
 - Offline
 - Online
 - Lack of periodic data
 - Data-rich
 - Expensive
 - Inexpensive

Linear Axis Health Tracking

[How?] IMU

Spindle Health Tracking

[How?] TBD

Squareness Health Tracking

[How?] IMU
Lesson #1 – Smart & Metrological

• Traceable – Data is traceable to NIST
 • Sensors calibrated along “measurement chain” to NIST

• Dimensional – Results are physical quantities
 • Inspired by international machining standards
 • Tracking Δ error motion > 2 μm and > 6 μrad
 • Physical quantities can be measured

• Verify and validate – If possible!
 • Compare results to those from traceable independent reference
 • Even complicated diagnostics can be shown to be correct
Lesson #2 – Smart & Simple

• Simple analytics
 • Can be explained and standardized
 • More robust because tested more easily
 • Easier to implement for great adoption
 • Goal- or physics-based thresholds

• Simple user setup
 • Plug and play solutions
 • Vendor neutral for flexibility
Lesson #3 – Future Directions

• Make smart machine tools with online, data-rich, and inexpensive diagnostics & prognostics of performance & root causes of faults/failures

• Predict part errors based on health tracking & optimize asset management

• Manufacturers also need...

MTConnect/Industry 4.0 – networked factories, to enable actionable intelligence about system interactions/relationships

“Close-the-Loop” Solutions – from process to part using subsystem performance at each level (machine tools & robots ↔ final part inspection)
Prognostics, Health Management, and Control

www.nist.gov/el/isd/ks/phmc.cfm