Simultaneous normal and torsional force measurement by cantilever surface contour analysis

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/0957-0233/22/5/055103)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 152.15.112.62
This content was downloaded on 12/04/2016 at 22:56

Please note that terms and conditions apply.
Simultaneous normal and torsional force measurement by cantilever surface contour analysis

Lee Kumanchik, Tony Schmitz and Jon Pratt

1 Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
2 Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
E-mail: leemk@ufl.edu, tschmitz@ufl.edu and jon.pratt@nist.gov

Received 9 November 2010, in final form 7 March 2011
Published 8 April 2011
Online at stacks.iop.org/MST/22/055103

Abstract
This study presents an alternative to the current Hooke’s law-based force relation between rectangular cantilever deflection and applied force. In the new approach, a transduction constant is presented that (1) includes no cross-talk between torsion and normal force components, (2) is independent of the load application point, and (3) does not depend on the cantilever beam length. Rather than measuring the cantilever deformation at a single point (such as the tip location), it is measured at multiple adjacent points using scanning white light interferometry to provide a three-dimensional description of the cantilever deformation during loading. This measurement, processed by a force relation based on a superposition of deflections derived from Euler–Bernoulli bending theory and St Venant’s torsion theory, provides the vertical, axial, and torsional force components simultaneously. Experimental results are compared to force predictions for the vertical and torsional components using macro-scale cantilevers under mass loading. An uncertainty analysis is also provided.

Keywords: microscopy, force, atomic, interferometry, stiffness, calibration

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The atomic force microscope (AFM) is an instrument that uses an elastically deformable cantilever with a specialized tip, or stylus, as a mechanical probe. The cantilever deformation, monitored by a detector, is used to infer the tip-to-sample interaction forces. Although the entire cantilever deforms, the detector typically only determines the motion at or near the tip (located at the free end of the cantilever). This is a natural choice since the AFM can perform imaging with the tip motion having a one-to-one correlation (ideally) to a sample’s surface contours. When used for force measurement, Hooke’s law, \(F = ky \), is used, where it is assumed that \(F \) is the vertical force, \(k \) is the cantilever bending stiffness, and \(y \) is the vertical tip motion. A schematic is included in figure 1 to identify the cantilever deformation due to a single point on the sample surface; the reader will note that this simple representation does not capture the actual geometry of typical AFMs.

The AFM has become ubiquitous in the research setting. It is commonly used in ultramicroscopy (imaging at atomic resolution) since it can be applied to non-conducting samples. Some example applications include biological by Franz and Puech (2008), crystalline growth by Kalb et al (2004), and pharmaceutical drug imaging by Veerapandian and Yun (2009). However, the AFM is not restricted to imaging. It is also used in atomic scale manipulation by Custance et al (2009), nanolithography by Rosa and Liang (2009), and data storage and retrieval, such as IBM’s Millipede project by Vettiger et al (2002). The AFM has also become a potential tool for quality control in microelectromechanical systems (MEMS) as a parallel technique to electronic quality control in microchip manufacturing; see Liu and Bhushan (2004).
This is due to the AFM’s force measuring capabilities, which enable material and mechanical testing. Many fields can benefit from the AFM’s ability to measure micro-scale forces. For example, there are efforts to measure the bonding forces between complementary nucleotides in DNA by Bornschleg and Rief (2008) and the mechanical stability of proteins has also been tested by Brockwell (2007). In tribology, the AFM is used to measure friction, such as between microspheres by Ling et al. (2007) and in capillary force analysis by Butt and Kappl (2009).

Due to the AFM’s popularity as a multi-function instrument, vendors strive for ‘turn-key’ system operation. However, achieving good force accuracy under this paradigm can be challenging. For example, cantilever stiffness studies have found that the manufacturer-specified stiffness can vary by as much as 300% from the calibrated value; see Langlois et al. (2006). One study by Emerson and Camesano (2006) combined all manufacturer specifications required for force measurement (including stiffness) and found that the combined uncertainty was greater than 1500%. While this level of divergence may not always be present, calibrating the AFM is clearly required to obtain meaningful results. However, after decades of calibration research, the best stiffness calibrations, performed by international standards agencies, are accurate to a few percent as described by Kim and Pratt (2010). Using methods available to the average user, the accuracy of stiffness calibration, in general, is limited to a range of 10–20% as reported by Emerson and Camesano (2006) and Matei et al. (2006). Because stiffness is one of the parameters required to determine force, the accuracy of the force measurement will be no better than the stiffness accuracy and, most likely, will be worse.

A more fundamental limitation is the assumed force relation, \(F = ky \). Cantilever mechanics studies by Heim et al. (2004) have shown how cross-axial sensitivity to forces perpendicular to the measurement direction leads to a systematic error between 10% and 20%. This error is independent of stiffness and displacement calibration. Other force relations have been proposed which take into account forces that arise from contact mechanics at the tip-to-sample contact mechanics (often unknown \textit{a priori}).

Figure 1. Simple schematic of AFM operation. Stylus forces cause deformation of the cantilever and a detector observes the deformation at a single point.

The three-dimensional elastic response of a cantilever due to an arbitrary force applied at the stylus can be approximated by combining two elasticity theories: (1) Euler–Bernoulli beam bending theory to describe deformation by forces applied on the \(xy \)-plane that cause bending; and (2) St Venant’s torsion theory to describe deformation by forces applied in the \(yz \) plane that cause twist. For small deformations, these two contributions can be superimposed to provide an analytical description for the three-dimensional deformation of the cantilever to an arbitrary force. Figure 2 shows the cantilever, axis directions, and three components of an angle (Heim \textit{et al} 2004), adhesion (Sarid \textit{et al} 1998), and friction (Karhu \textit{et al} 2009, Ogletree \textit{et al} 1996). These compensatory post-processing techniques are largely unused for several reasons. First, their complexity requires expertise in mechanics to understand and programming knowledge to implement. Second, they require geometrical parameters of the AFM setup (which are difficult to obtain) and knowledge of the tip-to-sample contact mechanics (often unknown \textit{a priori}). Third, the models are highly situational. For example, if the sample is very hard, plastic deformation is unlikely to occur or, if the cantilever and sample are submerged in water, capillary force is mitigated. Also, some are updated every few years leading to extra effort for users to stay current; see Heim \textit{et al} (2004), Wang (2009), Hutter (2005), and Edwards \textit{et al} (2008). Therefore, the simple force relation, \(F = ky \), remains in use. In a comprehensive review (1254 cited references) of AFM calibration and implementation in numerous fields by Butt \textit{et al} (2005), there was no mention of an alternative force relation to \(F = ky \).

Given the existing limitations, an alternative, yet simple, force relation with a transduction constant that is easier to calibrate than stiffness and that has no cross-axial sensitivity is desired. This paper details a new method for determining force that achieves these goals. The advantages of this method are that it includes no cross-talk between torsion and normal force components, is independent of the load application point, and does not depend on the rectangular cantilever beam length. Rather than measuring the cantilever deformation at a single point (such as the tip location), it is measured at multiple points to provide a three-dimensional description of the cantilever deformation. This measurement, processed by an alternative force relation, provides the vertical, axial, and torsional force components simultaneously (the vertical and torsional components predictions are experimentally verified in this study). The paper is organized as follows. First, the force model and experimental setup are described. Second, the model is evaluated using large-scale (macro) cantilevers. While these macro-scale cantilevers do not represent the micro-scale geometry of traditional AFM probes, it enables the proof-of-concept for the new force relation to be conveniently demonstrated. An uncertainty analysis based on the experimental setup is provided. Third, conclusions and future work, including the extension of this work to the micro-scale, are discussed.

2. Three-dimensional force relation

The three-dimensional elastic response of a cantilever due to an arbitrary force applied at the stylus can be approximated by combining two elasticity theories: (1) Euler–Bernoulli beam bending theory to describe deformation by forces applied on the \(x-y \) plane that cause bending; and (2) St Venant’s torsion theory to describe deformation by forces applied in the \(y-z \) plane that cause twist. For small deformations, these two contributions can be superimposed to provide an analytical description for the three-dimensional deformation of the cantilever to an arbitrary force. Figure 2 shows the cantilever, axis directions, and three components of an
arbitrary force: \(F \) for the vertical, or normal, force; \(P \) for the axial force; and \(T \) for the torsion force.

The general Euler–Bernoulli beam bending equation is

\[
\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 y}{\partial x^2} \right) = u, \tag{1}
\]

where \(x \) is the distance along the beam axis, \(y \) is the deformation perpendicular to the beam axis, \(E \) is the modulus of elasticity, \(I \) is the second moment of area, and \(u \) is a distributed load. Assuming that \(y = y(x) \), \(u = 0 \), fixed–free boundary conditions, and \(EI \) is constant, integration is straightforward and yields four equations:

\[
\begin{align*}
EI \frac{\partial^3 y}{\partial x^3} &= C_1 = -F \\
EI \frac{\partial^2 y}{\partial x^2} &= C_1 x + C_2 = M(x) \\
EI \frac{\partial y}{\partial x} &= C_1 x^2 + C_2 x + C_3 = \frac{w_0}{2} \\
EI y(x) &= C_1 \frac{x^3}{6} + C_2 \frac{x^2}{2} + C_3 x + C_4, \tag{5}
\end{align*}
\]

where (2) is balanced with shear force, (3) is balanced with moment, and the integration constants \(C_3 \) and \(C_4 \) are zero due to the rigid boundary condition at the fixed end (base) of the cantilever. Solving for the remaining coefficients yields the deformation equation

\[
y(x) = -\frac{F}{6EI} x^3 + \frac{FL + Pr}{2EI} x^2, \tag{6}
\]

where \(L \) is the cantilever length and \(r \) is the stylus height.

St Venant’s torsion theory states that the rate of twist is proportional to the applied torque:

\[
GJ \frac{da}{dx} = Tr, \tag{7}
\]

where \(\alpha \) is the angular twist about the beam axis, \(G \) is the shear modulus, and \(J \) is the torsion constant. Integrating once and converting from angular twist to deflection \((\alpha z \approx y) \) yields

\[
GJ y(x,z) = Tr x z + C_5 z, \tag{8}
\]

where \(z \) is the location across the width of the beam and \(C_5 \) is zero due to the rigid boundary condition at the cantilever base. The resulting deformation equation is

\[
y(x,z) = \frac{Tr}{GJ} x z, \tag{9}
\]

Combining the two deformation equations, (6) and (9), yields

\[
y(x,z) = \frac{-F}{6EI} x^3 + \frac{FL + Pr}{2EI} x^2 + \frac{Tr}{GJ} x z
= B_1 x^3 + B_2 x^2 + B_3 x z, \tag{10}
\]

where \(B_1, B_2, \) and \(B_3 \) generalize the deformation equation. Equation (10) analytically describes the three-dimensional deformation of a cantilever under an arbitrary load applied at the stylus\(^4\). As discussed previously, a single measurement of \(y \) is traditionally performed at an ideally known point \(x \) to determine the force at the stylus. By the analysis presented here, there are clearly more unknowns than equations and a unique solution is obtained only by making additional assumptions about the nature of the contact mechanics based on the properties of the measurement environment. In this research, measurements are performed at multiple \((x, y, z)\) locations simultaneously rather than just a single point. The corresponding system of equations in matrix form is

\[
\begin{bmatrix}
x_1^2 & x_1^2 & x_1 z_1 \\
\vdots & \vdots & \vdots \\
x_n^2 & x_n^2 & x_n z_m
\end{bmatrix}
\begin{bmatrix}
B_3 \\
B_2 \\
B_1
\end{bmatrix}
= \begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix},
\]

where \(m \) is the number of measurements across the width of the cantilever, \(n \) is the number of measurements down the length of the cantilever, and \(n \times m \) is the total number of measurements.

This can be compactly written as \([XZ] \{B\} = \{Y\}\) and the coefficients can be determined in a least-squares sense using the pseudo-inverse:

\[
\{B\} = [XZ]^+ \{Y\}. \tag{12}
\]

The force components can then be resolved based on the estimated coefficients using (13) through (15):

\[
F = -6EI B_3, \tag{13}
\]

\[
P = \frac{2EI}{r} (B_2 + 3B_3 L), \tag{14}
\]

\[
T = \frac{GJB_1}{r}. \tag{15}
\]

Since no additional assumptions were necessary to obtain the force components, this technique is robust to the measurement environment. Also, the parameters in the force equations become the new transduction constants. For example, in (13), the term \(-6EI\) is analogous to stiffness, \(k \), yet it is not

\(^4\) Note that the stylus is assumed to be rigid in this analysis.
The measurement has its own coordinate system \((x_{\text{meas}}, y_{\text{meas}}, z_{\text{meas}})\) which is offset from the deformation equation coordinate system \((x_{3D}, y_{3D}, z_{3D})\) by an unknown amount \((x_0, y_0, z_0)\). The \(z\) direction axes are directed out of the page in this view.

It is no longer satisfied, but the relationships for \(F\) and \(T\) are unaffected so that (13) and (15) still hold. In this research, \(F\) and \(T\) are quantitatively assessed, while \(P\) is left for future work.

3. Experimental description

The multi-point measurement of cantilever deformation was accomplished using a scanning white light interferometer (SWLI) to determine the surface topography of the deflected cantilever. In general, the SWLI detector, a camera, is used to determine a height value, \(y\), for each pixel (after data analysis) and each pixel is given a value, \(x\) and \(z\), for its position within the field of view. For the 640 x 480 pixel camera used in this research with the field of view completely filled by a cantilever, there were 307 200 \((x, y, z)\) data points (all results reported here used >200 000 data points). This large dataset was ideal for solving the coefficient matrix in (18) even with many outliers.

The SWLI magnification optics chosen for this research gave a field of view of approximately 2.8 mm x 2.1 mm.

A series of macro-scale cantilevers were fabricated from (1 1 1) silicon wafers by diamond cutting through the thickness of the wafers; the plan view dimensions are provided in table 1. The cut direction was selected to fabricate cantilevers with beam axes along the \([-1 -1 2]\) direction. The nominal elastic modulus value for this orientation is \(E = 168.9\) GPa (see McSkimin and Andreatch (1964)) and the nominal value for bulk shear modulus is in the range 54.0 \(\leq G \leq 64.7\) GPa depending on the cantilever width, \(w\), and thickness, \(t\) (see Wortman and Evans (1965)). The moment of inertia and shear rigidity were based on a rectangular cross-section and were computed as \(I = \frac{w^4 t^3}{12}\) and \(J = \beta wt^3\), respectively, where \(\beta\) is the torsion multiplier (see Srinath (1980)) provided in table 1.

An aluminum ‘tee’ was fabricated and bonded to the cantilevers using Crystalbond™ heat-activated adhesive\(^7\); see figure 4. While this tee effectively produced a composite beam (aluminum and silicon with variable cross-section), because the SWLI measurements (figure 3) were performed locally, it was assumed that the mass-loaded tee could be replaced by an equivalent force system that acted on the rest of the silicon cantilever and caused the measured deformation\(^8\). Although care was exercised in bonding the tee to the cantilevers, the bonding step was manually performed and subject to variability. Therefore, after bonding, the position of the tee’s alignment groove was measured relative to the cantilever and used to determine the orientation of the tee (measuring the entire tee required multiple measurements for stitching). The tee had three holes that acted as load points for various masses; see figure 5(a). The center hole was for pure bending \((F \neq 0, T = P = 0)\) and the offset holes were for simultaneous

\[\begin{bmatrix} x_1^3 \\ x_2^3 \\ \vdots \\ x_n^3 \end{bmatrix} = \begin{bmatrix} 1 & x_1 & z_1 \\ 1 & x_2 & z_2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & z_n \end{bmatrix} \begin{bmatrix} B_1 \\ H_1 \\ H_2 \\ H_3 \end{bmatrix}, \]

which can again be solved in the least-squares sense using the pseudo-inverse as

\[\begin{bmatrix} B H \end{bmatrix} = \begin{bmatrix} X Z \end{bmatrix}^T \begin{bmatrix} Y \end{bmatrix}.\]

Naturally, the relationship for \(P\) in (14), which includes \(L\), is no longer satisfied, but the relationships for \(F\) and \(T\) are

\(^5\) While often neglected in practice, the stiffness in the traditional force equation \(F = Ky\) refers to the effective stiffness of the cantilever-to-sample contact, which depends on the specific contact mechanics including, but not limited to, the sample’s tribological response.

\(^6\) Rotations were not considered because the cantilevers were leveled during experiments.

\(^7\) Certain commercial equipment, instruments, or materials are identified in the paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the identified are necessarily the best available for the purpose.

\(^8\) This assumption was based on classic beam mechanics. If a section through the silicon cantilever is defined, then the force/moment combination imposed by the dead weight loads (applied to the tee) is reacted at the section. The deflection response to this force/moment combination is measured by the SWLI.
Table 1. Cantilever geometries. The thickness, \(t \), was approximately 311 \(\mu \text{m} \).

<table>
<thead>
<tr>
<th>Cantilever number</th>
<th>Length (mm)</th>
<th>Nominal width (mm)</th>
<th>Measured width, (w) (mm)</th>
<th>Torsion multiplier, (\beta)</th>
<th>Positive torque arm (mm)</th>
<th>Negative torque arm (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0.959</td>
<td>0.263</td>
<td>5.339</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1.5</td>
<td>1.454</td>
<td>0.286</td>
<td>5.371</td>
<td>5.605</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2.5</td>
<td>2.462</td>
<td>0.306</td>
<td>5.528</td>
<td>5.448</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2.962</td>
<td>0.310</td>
<td>5.355</td>
<td>5.622</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.7</td>
<td>0.656</td>
<td>0.233</td>
<td>5.221</td>
<td>5.756</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>1.5</td>
<td>1.455</td>
<td>0.288</td>
<td>5.378</td>
<td>5.598</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>3</td>
<td>2.963</td>
<td>0.310</td>
<td>5.347</td>
<td>5.630</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>0.7</td>
<td>0.657</td>
<td>0.233</td>
<td>5.590</td>
<td>5.387</td>
</tr>
</tbody>
</table>

Figure 4. The aluminum ‘tee’ bonded to a 1.5 mm wide cantilever: (a) microscope image of the tee, (b) SWLI height map of the tee. Multiple images were stitched together to form these composite images, which enlarged the field of view. The groove near the cantilever was used for alignment purposes.

bending and torsion \((F = T \neq 0, P = 0) \). The lead masses, shown in figure 5(b), were loaded using a ball-in-socket arrangement to control the length of the torque arm; see figure 5(c). The torque arms are provided in table 1 and were corrected based on the tee orientation (positive torque arms indicate counter-clockwise twist and negative torque arms indicate clockwise twist).

The experimental procedure was composed of the following steps. First, all masses were measured using a Mettler Toledo AB265-S/FACT precision balance and all silicon cantilever widths were measured using the SWLI. Second, the tee was bonded to the cantilever to be tested and then measured using the SWLI to determine its actual orientation. Masses were selected to cover a range of deformations without overloading the cantilever (overloading indicates cantilever deformations where insufficient light was reflected back to the detector or the cantilever was at risk of breaking). Third, for each mass, the base of the silicon cantilevers was leveled to the SWLI coordinate system using the interference fringes and tip/tilt stages, a measurement was completed to record the deformation, the mass was unloaded, and a final measurement was completed for the unloaded condition. These two measurements were differentiated to isolate the deformation caused by mass loading from deformation that already existed, such as from the load of the tee, for example. Fourth, after all measurements were complete, the wafer was placed on a microscope glass slide and the silicon wafer thickness was measured using the SWLI. Since this step was often destructive, it was completed in only a few locations on the wafer and a mean thickness was obtained. This value was assumed for all cantilevers.

4. Force measurement results

4.1. Normal force loading

An initial experiment was performed which isolated the load to one component, \(F \). Cantilever 2 from table 1 was mass loaded at the center hole on the tee.Eight masses (3.260, 5.426, 7.552, 9.734, 11.877, 14.059, 16.122, and 18.285 g) were individually applied to the cantilever with five trials per mass. The coefficient matrix was determined using (18) and the force was computed using (13). Note that this force prediction does not depend on the force location, measurement location, or cantilever length. The force value was converted to mass by assuming a gravity constant of 9.81 m s\(^{-2}\). The results are presented in figure 6, where the error bars are based on the uncertainty analysis (section 4.4) with a coverage factor of 2 (95% level of confidence). The calculated mass (from the deformation measurement) underpredicts the measured mass by a mean of 6.2%, but is within the error bars. Note that the apparent parabolic trend in the data was not observed in any other tests.

4.2. Torsion force loading

All cantilevers in table 1 were loaded with at least three different masses five times per mass for each offset hole on the
Figure 5. ‘Tee’ attached to cantilever: (a) attaching a ‘tee’ to the cantilever enabled offset loading, (b) the lead masses used to load the cantilevers are pictured, and (c) an array of cantilevers with one cantilever being loaded using the ‘tee’.

Figure 6. Normal force results for eight masses using the deformation analysis. The error bars are based on the uncertainty analysis provided in section 4.4 with a coverage factor of 2.

tee. The first mass was the smallest in the set (2.166 g). The third was the largest mass the cantilever could accept without causing overloading. The other masses were selected to be between these two. The coefficient matrix was determined; the force was then computed using (15) and converted to mass as before. The results for positive torque and negative torque are shown in figures 7 and 8, respectively. Again, the predictions depend only on the local deformation of the cantilever beam measured using the SWLI. The calculated mass underpredicts the measured mass for positive torque loading by 7.4% and
Figure 8. Torsion results when the mass was loaded at the negative torque arm. The error bars are based on the uncertainty analysis provided in section 4.4 with a coverage factor of 2.

underpredicts the measured mass for negative torque loading by 11.2%. The mean of the two results is 9.3%.

4.3. Simultaneous torsion and normal force loading

There was significant environmental noise present in the first torsion study (section 4.2) which prevented meaningful calculation of the normal force component, \(F \), from this data. Therefore, two alterations to the setup were implemented. First, foam insulation was placed around the work area to block air currents. Second, the tethers for the masses were replaced by a rigid, stainless steel link. Motion at the mass became rigidly linked to the ball causing it to rock in its socket and transients were quickly damped. Cantilever 2 was then loaded with five masses (3.260, 5.426, 7.552, 16.122, and 18.285 g), which were applied at both offset holes (the positive and negative torque arms were 5.464 and 5.515 mm, respectively) with five trials per mass. The coefficient matrix was calculated and the mass was estimated using both normal force, by (13), and torsion force, using (15). The normal force results are displayed in figure 9 (two calculations, one for each hole) and the torsion force results are shown in figure 10 (similarly, two calculations were necessary). As before, the error bars are based on the uncertainty analysis in section 4.4 with a coverage factor of 2. The mean estimated mass using the normal force underpredicted the measured mass by 8.0% and the mean estimated mass using the torsion force underpredicted the measured mass by 11.9% (mean positive torque arm of 12.5% and mean negative torque arm of 11.2%).

4.4. Uncertainty analysis

The measurement uncertainty was evaluated using ‘propagation of errors’ and assuming that the covariances were zero.

\[
\begin{align*}
\left(\frac{\sigma_{\text{est}}}{m_{\text{meas}}} \right)_{\text{normal}} &= \sqrt{\left(\frac{\sigma_{E}}{E_{\langle 110 \rangle}} \right)^2 + \left(\frac{\sigma_{I}}{I_{\langle 110 \rangle}} \right)^2 + \left(\frac{\sigma_{B}}{B_{\langle 110 \rangle}} \right)^2 + \left(\frac{\sigma_{g}}{g} \right)^2 + \left(\frac{\sigma_{m_{\text{meas}}}}{m_{\text{meas}}} \right)^2} \\
\left(\frac{\sigma_{\text{est}}}{m_{\text{meas}}} \right)_{\text{torsion}} &= \sqrt{\left(\frac{\sigma_{G}}{G} \right)^2 + \left(\frac{\sigma_{J}}{J} \right)^2 + \left(\frac{\sigma_{B}}{B_{\langle 110 \rangle}} \right)^2 + \left(\frac{\sigma_{r}}{r} \right)^2 + \left(\frac{\sigma_{m_{\text{meas}}}}{m_{\text{meas}}} \right)^2}
\end{align*}
\]
In (19) and (20), the terms with asterisks were expanded further. The terms including I and J were expanded to

\[\frac{\sigma_I}{I} = \frac{\sigma_J}{J} = \sqrt{\left(\frac{\sigma_w}{w} \right)^2 + \left(\frac{\sigma_t}{t} \right)^2} \]

with

\[\frac{\sigma_I}{I} = \frac{\sigma_J}{J} = \left(\frac{\sigma_{I_{ls}}}{I_{ls}} \right)_{std} + \left(\frac{\sigma_{J_{ls}}}{J_{ls}} \right)_{std} \]

where \(w \) is the beam width, \(t \) is the beam thickness, \(res \) is associated with the SWLI height measurement resolution, and \(std \) is based on the standard deviation of thickness measurements at multiple locations on the beam. The terms including \(B_1 \) and \(B_2 \) were expanded to

\[\frac{\sigma_{B_1}}{B_1} = \sqrt{\left(\frac{\sigma_{B_{ls}}}{B_{ls}} \right)^2 + \left(\frac{\sigma_{B_{std}}}{B_{std}} \right)^2} \]

\[\frac{\sigma_{B_1}}{B_1} = \left(\frac{\sigma_{B_{ls}}}{B_{ls}} \right)_{ls} + \left(\frac{\sigma_{B_{std}}}{B_{std}} \right)_{std} \]

where the \(ls \) term is associated with the covariance matrix obtained during least-squares fitting and the \(std \) term is based on the standard deviation of repeated trials for each mass load. The term including the torque arm, \(r_s \), was expanded to

\[\frac{\sigma_r}{r_s} = \sqrt{\left(\frac{\sigma_{r_{res}}}{r_{res}} \right)^2 + \left(\frac{\sigma_{r_{align}}}{r_{align}} \right)^2} \]

where \(res \) is associated with the SWLI lateral measurement resolution and \(align \) is associated with the extrapolation of the hole location using the alignment grooves instead of a stitched image of the entire tee. Representative values are provided in Table 2 where the largest uncertainty contributor, cantilever thickness (standard dev), is also the term that gets multiplied by 3 in (21).

<table>
<thead>
<tr>
<th>Input</th>
<th>Ratio</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (std)</td>
<td>(\frac{t_{std}}{t})</td>
<td>(3 \times 10^{-2})</td>
</tr>
<tr>
<td>Normal force coefficient (std)</td>
<td>(\frac{r_{std}}{r})</td>
<td>(2 \times 10^{-2})</td>
</tr>
<tr>
<td>Torsional force coefficient (std)</td>
<td>(\frac{\sigma_{r_{std}}}{\sigma_{r}})</td>
<td>(2 \times 10^{-2})</td>
</tr>
<tr>
<td>Torque arm (align)</td>
<td>(\frac{\sigma_{\gamma_{align}}}{\gamma_{align}})</td>
<td>(2 \times 10^{-2})</td>
</tr>
<tr>
<td>Shear modulus</td>
<td>(\frac{\sigma_{\nu_{std}}}{\nu_{std}})</td>
<td>(1 \times 10^{-2})</td>
</tr>
<tr>
<td>Width</td>
<td>(\frac{\sigma_{w_{std}}}{w})</td>
<td>(3 \times 10^{-3} - 1 \times 10^{-2})</td>
</tr>
<tr>
<td>Elastic modulus</td>
<td>(\frac{\sigma_{E_{res}}}{E_{res}})</td>
<td>(5 \times 10^{-3})</td>
</tr>
<tr>
<td>Normal force coefficient (ls)</td>
<td>(\frac{\sigma_{r_{ls}}}{r_{ls}})</td>
<td>(5 \times 10^{-3})</td>
</tr>
<tr>
<td>Gravity</td>
<td>(\frac{\sigma_{g_{res}}}{g_{res}})</td>
<td>(4 \times 10^{-3})</td>
</tr>
<tr>
<td>Torque arm (res)</td>
<td>(\frac{\sigma_{r_{res}}}{r_{res}})</td>
<td>(2 \times 10^{-3})</td>
</tr>
<tr>
<td>Torsional force coefficient (ls)</td>
<td>(\frac{\sigma_{r_{ls}}}{r_{ls}})</td>
<td>(2 \times 10^{-4})</td>
</tr>
<tr>
<td>Mass measurement</td>
<td>(\frac{\sigma_{m_{res}}}{m_{res}})</td>
<td>(2 \times 10^{-4})</td>
</tr>
<tr>
<td>Thickness (res)</td>
<td>(\frac{\sigma_{t_{res}}}{t_{res}})</td>
<td>(2 \times 10^{-5})</td>
</tr>
</tbody>
</table>

The cantilever width uncertainty was specified as two times the SWLI lateral resolution for the selected magnification (2(4.4) = 8.8 μm). Dividing by the cantilever width gives a range from 0.3% to 1.3%. Similarly, cantilever thickness uncertainty was specified as two times the SWLI vertical resolution (2(2.7) = 5.4 nm) which was negligible for a thickness of 311 μm. However, thickness had a much greater variability when measuring at multiple locations on the same cantilever. Thickness measurements were made by placing a glass slide under the cantilever and measuring from the top of the glass to the top of the cantilever surface. This distance was affected by contaminants between the glass and cantilever and by variability in wafer thickness. Also, the setup required for measuring the thickness risked damaging the cantilevers. Therefore, a maximum variability of 9 μm was assumed based on multiple measurements of a few cantilevers at different locations on each cantilever. For a 311 μm thick cantilever, the uncertainty was 3%.

The coefficient matrix was obtained from a least-squares fit to the three-dimensional deformation data, i.e., a series of \((x, y, z) \) points. The uncertainty in the deformation data is related to the uncertainty in the coefficient matrix by the covariance matrix. Rewriting (16) more generally,

\[y(x, z) = B_1 f_1(x, z) + H_1 f_2(x, z) + H_2 f_3(x, z) + H_3 f_4(x, z) + H_4 f_5(x, z) + B_1 f_6(x, z), \]

a new symmetric matrix, \(\alpha \), can be defined with elements

\[\alpha_{jk} = \sum_{i=1}^{n} \sum_{j=1}^{m} \left[-\frac{1}{\sigma_{ij}} f_i(x_i, z_j) f_k(x_i, z_j) \right], \]

where \(l \) and \(k \) are the row and column numbers of \(\alpha \), respectively, and vary from 1 to 6, \(m \) is the number of measurements across the width of the cantilever, \(n \) is the number of measurements down the length of the cantilever, and \(n \times m \) is the total number of measurements. Since measurements are obtained from the SWLI camera data, each \((x, z)\) location is a different pixel, where \(i \) and \(j \) are the pixel indices. The term \(\sigma_{ij} \) is the y-coordinate measurement.
uncertainty at a given pixel \((i, j)\) and was assumed to be the same for all pixels. This enabled \(\sigma^2\) to be estimated by

\[
\sigma^2 \approx \frac{1}{N-6} \sum_{i=1}^{n} \sum_{j=1}^{m} [y_{ij} - (B_i x_i^3 + H_1 x_i^2 + H_2 x_i + H_3 y_i + H_4 + B_1 x_i x_j)]^2,
\]

where \(N = n \times m\) and 6 corresponds to the number of free parameters (the coefficients). The covariance matrix is the inverse of \(\alpha\). The elements of the covariance matrix are the variances and covariances of the fitted coefficients:

\[
\begin{pmatrix}
\sigma^2_{B_3} & \sigma_{B_3} \sigma_{H_1} & \cdots & \cdots & \sigma_{B_3} \sigma_{H_4} \\
\sigma_{B_3} \sigma_{H_1} & \sigma^2_{H_1} & \cdots & \cdots & \sigma_{H_1} \sigma_{H_4} \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
\vdots & \vdots & \cdots & \ddots & \cdots \\
\sigma_{B_3} \sigma_{H_4} & \sigma_{H_1} \sigma_{H_4} & \cdots & \cdots & \sigma_{H_4}^2 \\
\end{pmatrix}
\]

(28)

A typical result of the covariance matrix using torsion loading of 7.552 g on cantilever 2 for the positive torque arm is

\[
\begin{pmatrix}
816.1 & -3.456 & 0.004 & 0.000 & 0.000 & 0.001 \\
-0.015 & 0.000 & 0.000 & 0.000 & 0.000 \\
\vdots & \vdots & \ddots & \cdots & \vdots \\
\vdots & \vdots & \cdots & \ddots & \cdots \\
-3.456 & 0.004 & 0.000 & 0.000 & 0.001 \\
\end{pmatrix} \times 10^{-5},
\]

(30)

with values for \(|B_1|\) and \(|B_3|\) of 18.2556 and 0.4874, respectively. Taking \(\sqrt{\sigma^2_{B_3}}/B_3\) and \(\sqrt{\sigma^2_{B_1}}/B_1\) gives uncertainties of 0.5% and 0.02%, respectively.

The coefficients also had measurement-to-measurement deviation when loaded with the same mass multiple times. Therefore, the standard deviation was computed for every measurement sequence and found to be around 2% of the mean for both \(B_3\) and \(B_1\). Gravity was assumed to be 9.81 m s\(^{-2}\), but alignment to gravity was not checked so a conservative 5\(^\circ\) deviation was assumed leading to an uncertainty of 0.4% of 9.81 m s\(^{-2}\). The torque arms were assigned an uncertainty of two times the SWLI lateral resolution \(2(4.4) = 8.8 \mu m\). Additionally, the alignment grooves were used to extrapolate the torque arm distance. By using the extrapolation procedure and comparing to a direct measurement of the torque arm by stitching multiple images together, it was found that the torque arm could differ by as much as 100 \(\mu m\), so the uncertainty was set to this limit. Finally, all masses were weighed by a precision balance with a resolution of 0.1 mg. Based on measurements performed using calibrated masses, the mass uncertainty was set to two parts in 10\(^3\).

5. Discussion

All results underpredicted the measured mass (from 6% to 12%). The thickness was the largest uncertainty contributor at 3% (see table 2) providing a 9% uncertainty in the estimated mass compared to the measured mass. This uncertainty level is of the same order as the underpredictions (bias). It is therefore reasonable to conclude that the (single) thickness value used for all \(I\) and \(J\) calculations in (13) and (15) for normal force and torque, respectively, was too small. Thickness measurement is a significant challenge that is not unique to this research. Not only is it difficult to measure, but its uncertainty is also amplified because it is cubed in the force equation.

For the first torsion study (see the parameters provided in table 1), the estimated mass was systematically higher for the positive torque arm than for the negative torque arm (figures 7 and 8). This is contrasted with the second torsion study where the opposite trend was observed (figure 10). The reason for the difference is the method for computing the torque arms. In the first torsion study, because many cantilevers were tested, the torque arms were extrapolated based on the alignment groove. In the second torsion study, the torque arms were directly measured by stitching multiple images together to obtain both the tee and cantilever in a single view. Note that in the first study, the gap between the mean positive torque arm and the mean negative torque arm was 3.8%, while in the second study, the gap was 1.3% and in the opposite direction (total difference of 5.1%). The torque arm concept used in this research is analogous to AFM tip height. Determining these values is a significant challenge in cantilever force research.

In the study where the normal force and torsion force coefficients (figures 9 and 10) were computed from a single test, the estimated mass using the normal force could be directly compared to the estimated mass from the torsion force. The two results both underpredicted the measured mass, but by different amounts. The normal force underpredicted by 8% and the torsion force by 11.9% (difference of 3.9%). Common parameters in the force equations contribute equally and in the same direction to both results. Therefore, the difference must be because of uncommon parameters. For example, shear modulus uncertainty does not contribute to the normal force result, but does contribute to the torsion force result.

Within the framework of AFM cantilever calibration, the applicability of the force prediction approach presented here to direct and/or geometric calibration should be considered. In direct calibration, a known load is applied to set the model parameters. For geometric calibration, accurate measurements of the beam cross-section and material properties (or some equivalent representation) are required. For the direct calibration case, if it was desired to remove the biases in figures 6 through 10, one approach could be to modify the silicon wafer thickness, which (as noted) imposes the largest uncertainty in the force model. For figure 6 (cantilever 2, table 1), the bias between the mean and nominal values would be removed if the thickness was changed from 311 to 317.7 \(\mu m\) (this is within the 3% uncertainty level specified in section 4.4). To generalize this approach, the \(EI\) term in (13) could be treated as a single variable that is directly calibrated. This eliminates the thickness measurement challenges faced here.

For figures 7 and 8, a new thickness of 321.3 \(\mu m\) would remove the combined mean bias of 9.3%. Note that (1) each cantilever likely has a slightly different thickness, so the corrected value is an effective thickness for the population, and (2) this thickness is slightly outside the 95% level of confidence uncertainty range (311 \(\mu m\) ± 0.03 × 311 \(\mu m\) =
For figure 9, a thickness of 319.8 μm would be required for bias removal. These results are again for cantilever 2; the agreement with figure 6 thickness for bias correction is reasonable (1.8%) and within the measurement-to-measurement noise. For figure 10, based on the mean torsion force result, the new thickness would be 324.4 μm. There is a 3.9% difference between the mean normal force result (figure 9) and mean torsion force result (figure 10). Aside from measurement-to-measurement noise, all terms are the same, except for (1) the torque arm, which is not present in the normal force equation, (2) the modulus term (shear, G, or elastic, E), and (3) the torsional rigidity, J. Given that thickness alone cannot explain the discrepancy between the normal and torsional results, it is believed that the torque arm and shear modulus are also contributors in this case.

6. Conclusions and future work

Measuring the deflection of an AFM cantilever at a single spatial point requires the use of a scalar stiffness as the force transduction constant. Stiffness, however, is a poorly defined quantity for a cantilever sensing an unknown three-dimensional force vector. If, instead, deflection of the cantilever is measured at multiple points simultaneously, the force vector can be determined unambiguously. Measurements made this way are immune to many of the problems associated with traditional single-point measuring schemes. There is no dependence on where the load is applied or what portion of the cantilever is measured and there is no cubic dependence of measurement location on cantilever length. Each force component can be independently determined, whereas in single-point techniques, the total force vector must be decomposed using prior knowledge about the relationships between the force components or additional measurements must be performed.

Using a SWLI, the full-field deflection profile of rectangular cantilevers under load was measured. Masses were applied to macro-scale single crystal silicon cantilevers to cause bending and torsion. From the three-dimensional deformation, the masses were calculated and compared to an independent measurement by a precision mass balance. The discrepancy between the normal and torsional results, it is believed that the torque arm and shear modulus are also contributors in this case.

References

Bornschlegl T and Rief M 2008 Single-molecule dynamics of mechanical coiled-coil unzipping Langmuir 24 1338
Brockwell D 2007 Probing the mechanical stability of proteins using the atomic force microscope Biochim. Soc. Trans. 35 1564
Butt H and Kappel M 2009 Normal capillary forces Adv. Colloid Interface Sci. 146 48
Custance O, Perez R and Morita S 2009 Atomic force microscopy as a tool for atom manipulation Nat. Nanotechnol. 4 803
Edwards S, Ducker W and Sader J 2008 Influence of atomic force microscope cantilever tilt and induced torque on force measurements Appl. Phys. 103 064513
Emerson R and Camesano T 2006 On the importance of precise calibration techniques for an atomic force microscope Ultramicroscopy 106 413
Heim L, Kappel M and Butt H 2004 Tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements Langmuir 20 2760
Hutter J 2005 Comment on tilt of atomic force microscopy cantilevers: effect on spring constant and adhesion measurements Langmuir 21 2630
Kalb J, Spaepen F and Wuttig M 2004 Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys Appl. Phys. Lett. 84 25
Karhu E, Goeyers M and Hutter J 2009 Quantitative friction-force measurement by longitudinal atomic force microscope imaging Langmuir 25 6203
Kopycinska-Müller M, Geiss R and Hurley D 2006 Contact mechanics and tip shape in AFM-based nanomechanical measurements Ultramicroscopy 106 166
Ling X, Butt H and Kappel M 2007 Quantitative measurement of friction between single microspheres by friction force microscopy Langmuir 23 8392
Liu H and Bhushan B 2004 Nanotribological characterization of digital micromirror devices using an atomic force microscope Ultramicroscopy 100 391

McSkimin H and Andreatch P Jr 1964 Measurement of third-order moduli of silicon and germanium Appl. Phys. 35 3312

Veerapandian M and Yun K 2009 Study of atomic force microscopy in pharmaceutical and biopharmaceutical interactions—a mini review Curr. Pharm. Anal. 5 3

Wang F 2009 Comment on Influence of atomic force microscope cantilever tilt and induced torque on force measurements Appl. Phys. 106 096103

Wortman J and Evans R 1965 Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium Appl. Phys. 36 153