AN ANALYSIS OF POLISHING FORCES IN MAGNETIC FIELD ASSISTED FINISHING

Vasishta Ganguly and Tony Schmitz
University of North Carolina at Charlotte
Department of Mechanical Engineering and Engineering Science
Charlotte, North Carolina, USA

Arthur A. Graziano and Hitomi Yamaguchi
University of Florida
Department of Mechanical and Aerospace Engineering
Gainesville, Florida, USA

ABSTRACT
Magnetic field assisted finishing (MAF) is used to polish free-form surfaces. The material removal mechanism can be described as a flexible “magnetic brush” that consists of ferromagnetic particles and abrasives that arrange themselves in the working gap between the magnet and the work piece. Relative motion between the brush and the work piece causes micro-cutting and improves surface finish. In this study, the contributions of the magnetic and polishing force components to the total force were evaluated. The effect of varying the polishing conditions, such as the working gap and the size of the ferromagnetic iron particles, on polishing forces and surface roughness was also analyzed. It was observed that the polishing forces varied considerably with working gap. Also, the iron particle size was found to have a strong relation to the rate at which the surface roughness decreased. Surface area roughness of 2-3 nm was achieved.

INTRODUCTION AND PROCESS PRINCIPLE
In magnetic field assisted finishing (MAF) a magnetic field is used to maneuver a flexible “magnetic brush” (composed of ferromagnetic particles and abrasives and formed by the magnetic fields) over the surface to be polished. The relative motion between the brush and the surface can be obtained either by rotating the brush, moving the sample, or both. The brush can consist of either: 1) sintered particles, where the ferromagnetic and abrasive particles (e.g., SiC, Al₂O₃, CBN, diamond) are sintered together to form a ferromagnetic conglomerate; or 2) separate abrasive and ferromagnetic particles. For the latter case, the abrasives are held between and within the magnetic chains (brush) which are formed. A lubricant can also be used to aid in holding the abrasive particles within the flexible brush. Figure 1 provides a schematic of the material removal process.

Shimura et al. [1] first described the MAF process; they used diamond coated magnetic abrasives manipulated by a magnetic field to finishing cylindrical components. Fox et al. [2] also performed polishing on rollers and studied the effects of slurry type, lubricant, flux density, rotational speed, and vibration. Jain et al. [3] used a pulsed magnetic field to stir the magnetic abrasive slurry and found improved rates of material removal. Yamaguchi et al. [4] used magnetic finishing techniques to polish internal surfaces of tubes. Jain [5] conducted an extensive study of micro/nano MAF and explored the material removal mechanism.

Jayswal et al. [6] developed a numerical technique to simulate the material removal mechanism during MAF and predict the changes in surface roughness. Mori [7] used an energy method to explain the formation of the magnetic abrasive brush and developed a model for polishing forces based on the number of abrasive particles in contact with the surface. Singh et al. [8] employed design of experiments and response surface analysis techniques to develop a model for changes in surface roughness. The parameters considered were working gap, flux density, rotational speed, and abrasive size.
In this study, the forces during magnetic field assisted polishing were examined. The measured forces were divided into forces due to polishing effects and forces due to magnetic effects. A method to identify and isolate the different elements of the force measurement was established. The effect of varying the iron particle sizes and the working gap on polishing forces and surface roughness was examined.

FIGURE 1 - MAF PROCESS (THE NORMAL, Fn, AND LATERAL, Fx, FORCE COMPONENTS ARE IDENTIFIED)

EXPERIMENTAL SETUP

In this study a neodymium permanent magnet (12.7 mm diameter, 12.7 mm length) was used to produce the magnetic field. The magnetic brush was composed of iron particles of different sizes and diamond abrasive. In MAF, the iron particles trap and push the abrasive particles into the work piece surface causing material removal. For this work the relative motion was achieved by rotating the magnet about a vertical axis and translating it in a horizontal direction. This ensured that the non-magnetic diamond abrasive particles were held at the work piece surface due to gravity.

FIGURE 2 – SCHEMATIC OF EXPERIMENTAL SETUP

Figure 2 displays a schematic of the experimental setup. The sample (304 stainless steel, 2 mm thick) was mounted using an epoxy resin on a ferromagnetic mount. The ferromagnetic mount provided a path to complete the magnetic circuit. This intensified the magnetic flux density in the working gap between the magnet and the sample. For this work the relative motion was achieved by rotating the magnet about a vertical axis and translating it in a horizontal direction. This ensured that the non-magnetic diamond abrasive particles were held at the work piece surface due to gravity.

MAGNETIC FLUX DENSITY

The magnetic flux density in the working gap between the magnetic and sample depends on the strength of the magnet and magnetic permeability of the objects in close proximity. A Gauss meter was used to measure the magnetic flux density in the gap; see Figure 3. For a given gap, the flux density variation between the magnet and the sample surface was obtained by performing measurements at multiple vertical locations. In order to insert the Gauss meter into the working gap, however, the sample needed to be removed. Since the permeability of 304 stainless steel is negligibly small (under cold worked conditions it does become slightly magnetic), the effect of removing the sample on the flux density was ignored.

FIGURE 3 – SCHEMATIC OF EXPERIMENTAL SETUP FOR MEASURING MAGNETIC FLUX DENSITY

First, the flux density was measured as a function of the distance from the magnet pole with the sample mount removed. Figure 4 shows the measured flux density as a function of distance from the magnet (the inset shows that the flux density asymptotically reduces to zero). Further tests were completed to examine the variation in flux density for different working gaps, but with the sample mount in place; see Figure 5. It is evident that as the gap size decreases the flux density in the gap increases. Also, the variation of the flux density (the slope) is lower than for the case when the sample mount was removed. This indicates that the sample mount does provide a path for completion of the magnetic circuit.

POLISHING CONDITIONS

Polishing tests were completed under several different conditions. The effect of varying the gap size and abrasive particle size on surface roughness and polishing forces was investigated. The polishing conditions are defined in Tables 1 and 2 (PC1-PC8). For all trials the spindle speed was 500 rpm and the translational velocity was 100 mm/min. A soluble-type barrel finishing compound (pH 9.5, 755 mPa-s at 30 deg C) lubricant was used. Diamond was used as the abrasive particles.
NORMAL POLISHING FORCES

The MAF forces can be divided into two categories: 1) magnetic effects; and 2) interactions between the brush and sample. When studying the forces for different polishing conditions, it is important to accurately separate the two categories. The polishing cycle consisted of several steps. First, the magnet was placed in a retracted position where the effect of the magnetic field on the sample mount was negligible. The dynamometer was reset at this position to give zero force in all directions. The magnet was then advanced toward the sample until the prescribed working gap was reached. The magnet was held at that position for a short period after which rotation and simultaneous back and forth translation began. After completing the desired number of translations the rotation was stopped. The magnet was then retracted to its original position.

As noted, in order to accurately isolate the polishing forces from the magnetic forces in the normal force, F_n, it was necessary to identify the force component due to magnetic effects alone. The magnetic forces exist mainly in the normal direction along the axis of the magnet. The symmetry that exists in the two orthogonal directions nullifies the magnetic effects and only polishing forces are measured. The magnetic effects can be divided into three categories.

Effect of sample mount

As the magnet advances towards the sample it exerts an attractive pull on the ferromagnetic sample mount. This attractive force is observed as a negative normal force (based on the dynamometer orientation). This component is the primary contributor to the magnetic effect.

Effect of magnetic slurry

The magnetic slurry, when added, acts as an extension of the magnet and produces an additional pull which is observed as an additional negative normal force.

Effect of sample magnetism

For a magnetic sample the magnet exerts a pull on the sample as well. This is also a negative normal force. In this study, this effect was negligible for the 304 stainless steel sample.

In order to identify each of the individual magnetic effects, it was necessary to perform several experiments. Using the test results, it was possible to determine the reference level for determining the polishing forces (i.e., the polishing forces could then be isolated from the magnetic effects).

No sample, no slurry

The polishing cycle was completed with no sample or slurry. This enabled the pull of the magnet on the sample mount to be isolated.

No sample, slurry

The polishing cycle was completed without the sample, but with the slurry. There was still no polishing because the slurry did not make contact with the sample mount. This test enabled the effect of the slurry on the normal force to be identified.
Sample, no slurry

The polishing cycle was completed with the sample, but without the slurry. There was therefore no polishing. This test enabled the extra pull due to the sample to be determined.

The individual effects were then identified using the following relationships.

Effect of sample mount, \(F_{sm} = -F_{n(no \ sample, no \ slurry)} \)
Effect of slurry, \(F_{sl} = F_{n(no \ sample, slurry)} - F_{n(no \ sample, no \ slurry)} \)
Effect of sample, \(F_{sa} = F_{n(sample, no \ slurry)} - F_{n(no \ sample, no \ slurry)} \)

The reference was then computed using the following relationship. Table 3 lists the magnetic field effects obtained for all eight polishing conditions.

Reference = \(-F_{sm} - F_{sl} - F_{sa}\)

<table>
<thead>
<tr>
<th>(F_{sm}) (N)</th>
<th>(F_{sl}) (N)</th>
<th>(F_{sa}) (N)</th>
<th>Reference (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1 16.06</td>
<td>2.14</td>
<td>0.20</td>
<td>-18.40</td>
</tr>
<tr>
<td>PC2 16.06</td>
<td>2.04</td>
<td>0.20</td>
<td>-18.30</td>
</tr>
<tr>
<td>PC3 16.06</td>
<td>1.83</td>
<td>0.20</td>
<td>-18.09</td>
</tr>
<tr>
<td>PC4 16.06</td>
<td>1.28</td>
<td>0.20</td>
<td>-17.54</td>
</tr>
<tr>
<td>PC5 16.06</td>
<td>1.74</td>
<td>0.28</td>
<td>-21.10</td>
</tr>
<tr>
<td>PC6 16.06</td>
<td>2.55</td>
<td>0.18</td>
<td>-15.92</td>
</tr>
<tr>
<td>PC7 16.06</td>
<td>2.14</td>
<td>0.12</td>
<td>-11.69</td>
</tr>
<tr>
<td>PC8 16.06</td>
<td>1.94</td>
<td>0.08</td>
<td>-8.96</td>
</tr>
</tbody>
</table>

To determine the polishing forces, the polishing cycle was completed with both the sample and the slurry present. This provided contact between the slurry and sample and polishing occurred. The normal polishing forces was then computed with respect to the reference.

Normal polishing force, \(F_{npol} = F_{n(sample, slurry)} - \text{Reference} \)

Figure 6 displays all tests superimposed for PC1. Each individual effect can be identified in the polishing section of the cycle. Figure 7 shows a magnified section of the relevant region where all the various effects have been identified.

Other sections of the polishing profile also provide relevant information. Figure 8 shows the magnet approach. As the magnet moves towards the sample, the pull of the magnet on the sample produces a negative normal force. However, as soon as contact is made between the slurry and sample, there is a sudden increase in normal force. This increase is, however, not sustained and quickly reduces to a lower value. This would suggest that there a realignment of particles in the magnetic brush due to the pressure between the brush and sample. There is a similar drop in force when rotation first begins. This is believed to be due to the centrifugal forces which act on the particles and again leads to a brush realignment. Figure 9 shows the end of the cycle. When rotation stops, there is an increase in normal force on the sample. This is the opposite of the effect which was witnessed when rotation started. Also, when retraction of the magnet back to its original position begins, there is a negative spike in normal force. This indicates an increase in upward pull on the sample. This sudden increase is believed to be due to an extension of the brush as it is pulled away from the sample surface.

LATERAL POLISHING FORCES

Since the setup is symmetric in the horizontal direction, any magnetic effects are nullified and the dynamometer force in the lateral directions is solely due to polishing effects. However, in order to observe lateral polishing forces it is necessary that the particles in the brush be translated in addition to rotating. The velocity of each individual particle in the brush is then the sum of its rotational component (due to magnet rotation) and translational component; see Figure 10.
The velocity components in the x and y (translation) directions, v_x and v_y, are defined as follows, where v is the translation velocity, r is the radial distance of the particle from the rotating axis, and θ is the angular orientation of the particle.

\[
\begin{align*}
 v_x &= r \omega \sin(\theta) \\
 v_y &= v + r \omega \cos(\theta)
\end{align*}
\]

In most cases, the rotational component is much higher than the translational component and the different particles in the brush cancel each other and produce near zero lateral forces. Figures 11a-11c show the velocity vectors for the individual particles in the brush at different translational velocities for a fixed rotational speed of 500 rpm. As the translational velocity increases, the number of particles with velocity components in the translation direction also grows.
As a result of the cancelling effect at low translation speeds, the lateral polishing forces cannot be measured simultaneously with normal polishing forces. In order to measure lateral forces a different polishing cycle was employed. The cycle again consisted of multiple steps. First, the magnet approached the sample from a distance where the magnetic effects were negligible. Once the prescribed working gap was achieved, the magnet was rotated for a brief period (2 seconds). This was necessary to evenly distribute the magnetic slurry below the magnet. The rotation was then stopped and the magnet was translated back and forth for a selected number of cycles. The magnet was then retracted to its original position. The direction of the force measured by the dynamometer naturally changed with the translation direction reversal. The lateral polishing force was then defined as the average force from the two directions. Figure 12 displays the lateral force measurements for PC1.

Lateral forces were measured at several different translation speeds to study the effect of speed on the force magnitude. It was found that translation speed had little impact on lateral force. Figure 13 shows a plot of lateral forces versus translational speeds (PC 3).

FORCE RESULTS

Polishing tests were conducted under a number of different polishing conditions as defined in Tables 1 and 2.

Varying iron particle size

The iron particle size was varied to examine the effect on polishing force. Four different particle sizes were considered: \{5, 44, 149, and 297\} \(\mu\)m. All the other parameters were kept constant. Figure 14 displays the corresponding normal and lateral polishing forces, where the error bars represent \(\pm 1\) standard deviation obtained from multiple repetitions. The normal force magnitude decreases slightly as the iron particle size increases. This result is counter-intuitive since a larger iron particle would be expected to experience higher forces in the magnetic field. However, the dynamometer does not measure the individual force exerted by each particle, but instead measures the downward force applied by the entire magnetic brush. It is proposed that the smaller iron particles enable the formation of a more even brush which causes a larger number of particles to be in contact with the sample. Therefore, although the smaller iron particles may experience smaller magnetic field forces individually, on the whole they apply more attractive force between the magnet and sample resulting in a higher normal force measurement. This same effect is also seen in the lateral force measurement.

Varying working gap size

Tests were also completed to examine the effect of working gap size on polishing force and surface roughness. Figure 15 displays the normal and lateral forces obtained at working gaps of \{1, 2, 3, and 4\} mm. The polishing conditions are defined in Table 2. Note that the mass of the iron particles in the slurry was maintained proportional to the working gap to ensure the same density of slurry in the gap in each case (for a 1 mm gap, the iron particle mass was 200 mg; for a 2 mm gap, the mass was 400 mg, etc.).

Figure 15 shows that the normal polishing force has a strong dependence on the working gap. This is because the flux density decreases as the working gap increases (Figure 5). The lateral forces are also inversely related to the working gap. All these polishing conditions produced a rapid improvement in surface roughness so only a single polishing trial was completed. The error bars represent the \(\pm 1\) standard deviation in force measurement during the single cycle.
SURFACE ROUGHNESS RESULTS

The surface roughness of the samples was measured using a scanning white light interferometer (SWLI). Measurements were performed after each polishing trial. Area surface roughness (Sa) values were obtained at nine locations. The Sa value was determined after wavelength filtering using a band pass filter with low frequency cutoff wavelength of 80 µm and high frequency cutoff wavelength of 3.31 µm; the low frequency wavelength was 1/5th of the side of the measured area as per ISO 4288 specifications. A fixture was used to accurately relocate the sample with respect to the SWLI objective so that the same spot could be measured after each polishing trial. Figure 16 identifies the polished area and the locations at which surface roughness measurements were completed. The samples were prepared as described previously.

Varying iron particle size

Figure 17 shows the variation of the mean surface roughness values for different iron particle sizes after each polishing trial. The error bars indicate ±1 standard deviation for the nine measurement locations in Figure 16. This plot clearly shows that the brushes with smaller iron particles produced little to no improvement in the surface roughness despite exerting larger normal and lateral forces on the sample (Figure 14). There was a rapid improved in surface roughness with an iron particle size of 149 µm (PC7) or 297 µm (PC8). This is in agreement with the observation made by Jain [5] that there is no material removal when the size of the particle is smaller than the top width of the valley. As the iron particle size increases they are prevented from entering the valleys and produce material removal at the peaks. It is also important to note that, although the entire brush might produce larger normal and lateral forces, each individual particle for the smaller sized iron particles exerts little force on the surface. Thus, the localized polishing force is higher when the iron particle size is greater. This results in a faster improvement in surface roughness.

There is a combination of two factors that dictate whether there is material removal: 1) the size of the iron particles should be larger than the top width of the valleys in the surface; and 2) the iron particles must be large enough to impart sufficient force on the abrasive particles to cause material removal. Figure 18 shows the surface profile section of the initial surface of the sample along with a schematic representation of the iron particles. The 5 µm and 44 µm iron particles may enter the valleys in the surface but the 149 µm particle will only cause material removal at the peaks. Note that the particles have been idealized as spheres for representation purposes.
Varying working gap size

Figure 19 shows the time-dependent variation in surface roughness for different working gaps. The results show that after a polishing time of 6 min, the 1-3 mm gaps produced a similar surface roughness. A larger variation in surface finish improvement may have been observed for a shorter polishing period. For a working gap size of 4 mm (PC8), the final surface roughness was higher. Because the polishing force decreases with increasing gap (especially along the circumference of the brush), there was less material removal (and polishing) at the periphery even though there was good material removal in the middle of the brush. Figure 20 shows the surface roughness values at the various locations on the sample after polishing with a working gap of 4 mm (PC8); all values are in nm.

Direction of lay

The lay of the polished surface depends on the location with respect to the rotating magnet (rotation and translation tests). Figure 21 shows the SWLI measurements for the nine different locations on the sample. This particular set of data corresponds to the surface roughness measurements taken after the third polishing trial with polishing condition PC3 (the point at 9.6 min on 149 μm line in Figure 17). The original lay of the surface was horizontal with respect to these measurements (evident from the top right box where some of the original scratches remain).

The various locations are divided into four groups. The four corners (A) only come in contact with the outer periphery of the brush and they are completely uncovered when the brush has traversed to the opposite end. These locations therefore experience the least improvement in surface roughness. The lay directions are tangential to the brush rotation of the brush and in this image are at 45° to the window as expected (note that the top right section has significant residual scratches from the initial surface finish). At the B locations, the surface is always
in contact with the brush. These spots also come in contact with only the outer periphery of the brush. However, as the brush traverses the asperities at these locations are polished from more than one direction which, combined with the fact that these locations are in contact with the brush for longer periods, leads to an improvement in the surface roughness over the A locations. The lay direction forms an 'X' at B. At C the surface comes in contact with the periphery of the brush and also comes directly under the brush when the magnet transverses in that direction. These locations are completely uncovered when the magnet traverses to the opposite end, however. At these locations the original lay direction is always perpendicular to the velocity of the brush particles. This is the most aggressive angle of attack for material removal and leads to clearly vertical lay directions. At D, which is in the center of the polished area, the surface is always in contact with both the periphery and the interior parts of the brush. The instantaneous velocity of the abrasive particles is tangential to the original lay directions. This spot experiences the most aggressive material removal and the most rapid improvement in surface roughness. The lay direction after polishing is clearly vertical.

Variation in surface topography

The variation in surface topography including waviness was also investigated. While the previous SWLI results were wavelength filtered to isolate roughness, the filter was removed for this analysis. Figure 22 shows the surface topography of the same location (the center measurement from Figure 20) after successive polishing trials using PC3. It is seen that the large “divot” in the upper left hand corner remains through 9.6 min. However, after polishing for a long period of time (38 min), the surface is completely altered and bears little resemblance to the original surface.

A SWLI measurement was also completed at the edge of the polished area to identify the amount of material removed; see the cross-section in Figure 23. Approximately 3 µm of material was removed from the original surface (viewed on the right – note that it still exhibits the original roughness prior to polishing). This figure was obtained after 38 min of polishing.

Variation in light intensity

Figure 24 show light intensity plots obtained using the SWLI for the full width of the polished area for four different iron particle sizes. These images were obtained by stitching several measurements together. The total image area is 2 mm × 15 mm. The unpolished surface is visible at the top and bottom of each image. All polishing trials did produce some visible difference in the surface. However, the PC3 and PC4 surfaces are clearly less rough than the PC1 and PC2 cases.

Atomic force microscope results

In order to validate the data obtained from the SWLI, the results were compared with measurements completed using an atomic force microscope.
atomic force microscope. The scan area for the AFM was 60 μm × 60 μm. Figure 25 provides results for PC3. The SWLI measurements are on the top. It was found that the results obtained with the AFM were comparable to those obtained using the SWLI. Note that the area of the sample being measured was different between the two measurements.

CONCLUSIONS

In this work, magnetic field assisted finishing (MAF) was used to polish 304 stainless steel samples using ferromagnetic particles and diamond abrasives. A technique for isolating the polishing forces from the magnetic forces was described. The effect of varying the polishing conditions, such as the working gap and the size of the ferromagnetic iron particles, on surface roughness and polishing forces was investigated. A number of conclusions can be drawn based on the experimental results and analysis.

- The addition of a ferromagnetic mount behind the sample serves to aid in completing the magnetic circuit and increases the magnetic flux density in the working gap. This leads to higher polishing forces.

- While measuring MAF polishing forces, it is necessary to isolate the magnetic field effects from the polishing effects.

- The normal and lateral forces were found to have an inverse relationship with both iron particle size and working gap.

- The rate of improvement in surface roughness with polishing time depends on the iron particle size. If the particles are too small, there is little material removal even after polishing for prolonged periods of time. The rate of improvement in surface roughness is not sensitive to the working gap. However, for larger gaps, the material removal at the periphery of the brush reduces rapidly. The amount of slurry was maintained proportional to the gap size in this study.

- The improvement in surface roughness decays with increased polishing time. Further improvement requires a change in the polishing conditions.

- The translational velocity has almost no effect on the magnitude of lateral polishing force.

- The lay of the polished surface is dictated by the path of the magnetic field and the direction of the abrasive particles.

- The final surface topography depends on the polishing time.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from the National Science Foundation (Grant #0855381).

REFERENCES