Plasma Primer Part II
(Boltzmann’s Equation and Conservation Laws)

Boltzmann’s Equation – Continuum Conservation Laws:

Boltzmann’s Equation governs temporal and spatial variations in each species distribution function.  Severl approaches to deriving this central relationship are possible.  The following is probably the easiest to understand since it uses a generalized conservation argument (See Alternative Argument in Tien & Leinhard, Statistical Thermodynamics, Hemisphere 1979).
Since 
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 then we can consider f as being defined in a G-dimensional space (phase space) in which the independent variables are 
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.  Boltzmann argues that the total time rate of change of 
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 must be due to collisions between particles.  In other words:
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Where 
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denotes the net rate of change in 
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 due to collisions.  We will go into more detail on this term later (when deriving continuum equations).  Now, since 
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The term 
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 is just the absolute velocity component 
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 is the particle acceleration which we can determine using Newton’s Second Law:
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Where 
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is the net force on s particles (ith component).  In a plasma, the dominant force is the electromagnet
ic body force, which is given by:
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Where 
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 is the electric field, 
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is free charge on species s, and 
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 is the magnetic field.  The first form on the right represents the coulomb force while the second follows from ampere’s law.  Thus (3) becomes:
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Inserting (5) into (2) and using 
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 we obtain Boltzmann’s equation:
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=Boltzmann’s Equation for species s in a plasma

Notes

1) Under nominally collisionless conditions, the collision term 
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2) Under equilibrium conditions (i.e. no velocity gradients, no temperature gradients, and no specie gradients) the distribution functions for each species does not change with time.  In other words collisions do not change 
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.  Thus under equilibrium conditions 
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=0.  (Note that collisions do occur under equilibrium conditions they do not affect 
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3) We will find that the collision term 
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 gives risk to a mass source term (due to chemical reactions) when deriving the continuum conservation of mass.  Similarly, this term gives rise to a dynamical friction terms in the species momentum equation.  (Note: Viscous forces will come out of the stress tensor [
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] we discussed earlier.)
4) In flows where collision between particles are elastic (typically true in non-plasma gas flows) it can be shown that the collision term equals zero.

5) Under steady-state conditions 
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Derivation of Conservation Laws (Continuum):

First, multiply (6) by a molecular property 
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 and integrate with respect to 
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Where
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Now:
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(7c)
Note that in the last step we used a generalized form of the divergence theorem to convert 1st ‘volume’ integral in the 1st line to a ‘surface’ integral in the second line (i.e. we’ve done integration by parts).  
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Exercise:  Show that 
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 for 
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.  Using (7a)-(7d) in (7) we obtain:
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(8)
This is called Maxwell’s Transport Equation.

Conservation of Species 
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Thus (8) becomes:
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IN words, L.H.S. states that local rate of change of specie 
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+ net flux of 
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 with and through an infinitesimal volume of space = R.H.S.  Thus,  R.H.S. is interpreted as a mass source form (of species s), which in Boltzmann’s picture, arises due to collisions.  Therefore, R.H.S. is written as 
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where s is created by chemical reactions or ionization or recombination.
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= Conservation of Species s
(9) 
Overall Mass Conservation
Sum up all species conservation equations:
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=0 since there can be no net course or sink of mass during chemical reactions, ionizations and/or recombination. Note that (10) is exactly the equation we derive when doing a mass balance on an infinitesimal volume, i.e., it’s the same conservation of mass equation we use in fluid mechanics.
Conservation of Species Momentum

Let 
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.  The transport equation (8) becomes:
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Since 
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are independent variables, then are not functions of time, thus:
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But, 
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Thus, collecting all of these into equation (11) we obtain:
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(12)

Specie conservation of linear momentum.  Note that the term on right side represents a momentum source term associated with collisions of s with other species and with itself.  We’ll consider this term in detail later.

Overall Conservation of Linear Momentum

Sum all terms in equation (12) over all species.
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Now 
[image: image71.wmf]vv

vv

 is a diadic, which can be expressed in indicial notation as:
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The divergence of a diadic can be calculated as follows:
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Thus:
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Similarly, 
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We will call 
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the conductive current.  Physically it’s the electric conduction component due to the charged particle diffusion.  Thus:
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Due to the mobility of electrons with in plasmas, and positive charge is rapidly neutralized by a swarm of electrons.  The result is that free charge density, 
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, tends to be negligible (except for near boundaries, where the rapidly moving electrons can pass preferentially into or away from the solid; in these regions, called sheaths, non-neglible 
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 as a momentum source term in the momentum balance for species s (due to collisions between particles).  Due to conservation of momentum during collisions, the sum of all s momentum source terms equals 0.  Thus the overall conservation of momentum equation is given by:
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(13)


=overall conservation of momentum within plasma

Equation (13) can be simplified by use of overall conservation of mass, equation (10), and by defining:



[image: image89.wmf]Jevj

r

º+

vv

v

= current density


(= current due to bulk flow + current due to diffusion)

Thus, 
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Or
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= Overall conservation of momentum

Note that the only difference between (14) and the Navier-Stokes questions is the body force term on the R.H.S.  In the Navier-Stokes equation, this is 
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 (we’ve neglected gravitational force in our derivation; no real need to, gravity is typically much smaller than the electromagnetic forces).  

Note: To actually solve (14) or (13) we need explicit expressions for 
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By letting 
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 term that arises in the momentum equations) is unknown.  To obtain a closed problem, we return to the Botzmann equation (6) 
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 and derive approximate relationships for 
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 involving only distribution functions (of both s and other species).  This leads to N coupled Boltzmann Equations in N distribution functions (where N=number of species).  Once these N equations are obtained, then the usual procedure is to assume that each distribution functions is nearly maxwellian (isotropic) (which arises when each specie is in equilibrium).  Each distribution function is the expanded as:
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 is the (known) Maxwell distribution, 
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 can be explicitly calculated.  Using this approach, it is that:
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Which is the well-known constitution relation for Newtonian Fluids (i.e. fluids in which shear strain rate 
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The relationship for 
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 will either be derived or given later.

Species Energy Equation
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= Total energy of an individual particle
Referring to equation (8) lets obtain expressions for each term:
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Follow the same procedures as before and express everything in terms of mass average velocity 
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 and diffusion velocity 
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(where we have used 
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Since a particles internal energy and velocity aren’t explicitly functions of t.
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Now
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Also we define the best flux vector 
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Physically, the term in parentheses is the particle energy associated with its random motion and its internal energy.  Thus 
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 is a measure of the molecular energy transport due to random molecular motion (i.e. diffusion of molecular energy).  
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(where we have used 
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Since 
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Using (16), (17) and (18) in the transport equation (8) we obtain:
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(19)
This is the specie energy equation.

Overall energy equation

Let’s use the following definition of the average specie internal energy 
[image: image141.wmf]s
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And rewrite (19):



[image: image143.wmf][

]

2

22

2

2

()

2

()

2

s

ssss

s

ssssss

ss

sssss

c

vvve

t

vvvnkTev

f

vvvvJEEJdw

t

r

rr

r

rr

r

e

¶

æö

+++

ç÷

¶

èø

éù

+Ñ+++

êú

ëû

¶

éùæö

+Ñ+-Ñ-=

ç÷

êú

¶

ëûèø

vv

g

vv

g

vvv

vvvv

gggg


(19a)

= Species energy equation

Now sum each term in (19a) over all species:
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Similar manipulations  can be used on the 4th through the 7th terms in (19a):
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Rate of work due to shear stresses
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 (i.e. net energy transfer during collisions between all species is zero)

Thus, overall energy equation is:
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(20)

Heat Flux Vector 
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:

1) When all species temperatures 
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 are equal to a single temperature, T, and when all 
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 are Maxwellian (we’ll describe this later), then 
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Where k= the ordinary thermal conductivity = fn(T)
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This version of k is sometimes called ‘frozen’ thermal conductivity.

2) In the case where all 
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(gradient in specie density) then:
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 Since 
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 typically depends on other properties beside specie density gradients, (22) only applies under special conditions.

3) In cases where heavy particle temperatures =
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, temperatures =
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, then we can express k in terms of a heavy particle thermal conductivity, 
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; in this case:
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This expression reflects the fact that electron collisions with heavy particles (essentially) have no effect on the heavy specie distribution functions.  The existence of (at least) two temperatures, a heavy particle temperature, 
[image: image169.wmf]T
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, and an electron temperature, 
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, is due to the much greater mobility of electrons (reflected in a higher 
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).
Exercise: Show that the overall energy equation (20) can be expressed as follows:
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Where: 
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Use continuity equation (10) and momentum equation (14).
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