Plasma Physics Primer  Part I
Statistical Behavior of Plasmas
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1. Distribution Functions: Since there are on the order of 1012 to 1024 gas atoms, molecules and ions per m3 in a plasma, it is most convenient to look at the behavior of those particles from a statistical standpoint.  The particles in any given volume in general, have a distribution of velocities that arise due to numerous collisions between particles.  The distribution function f describes the distribution of particle velocities at any given point 
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 and any given instant t.  In particular, the number of particles having velocities between 
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, at time t is:
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Where
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[Note: we will often denote a vector 
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In a plasma, there are several species which interact (collide) with one another and with other species.  These include electrons, ions, and neutral particles.  Each specie will in general have it sown distribution function:



Electron distribution function=
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Ion distribution function=
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Neutral specie distribution function=
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Or, in general, the distribution function per specie s is:
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We can either determine the distribution function for all species or we can use the typically unknown distribution functions to derive useful continuum conservation laws (conservation of mass, momentum, energy) for each specie and the overall plasma.  
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 can only be determined (in closed form) for relatively simple problems.  Typically, we have to use Boltzmann’s equation, which describes the temporal and spatial evolution of any given
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, to derive continuum conservation principals.


Number density (of species)
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Thus, dns is the number of particles of species s per unit volume having velocities between 
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.  The total number density is found from (5) by integration over all possible velocities:
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Note, physically and mathematically, (6) requires that 
[image: image22.wmf](,,)0

s

fcxt

®

v

v

as 
[image: image23.wmf]c

®±¥

v

.


Mass Partial Density of Species s
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Where 
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Total Mass Density
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Temperature of species s is defined based on the kinetic energy of s:


(total random kinetic energy)/s


Unit volume[image: image170.wmf]ss
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Where K=Boltzmann’s Constant

This definition arises from the equipartion of energy theorem which states that each particle degree of freedom has an energy 
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 associated with it.  Thus, since kinetic energy is the energy of translation and since there are 3 translational degrees of freedom (1 for each coordinate direction), then the kinetic energy of each particle s is 
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We can relate 
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 to 
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 by using definition of kinetic energy:


Kinetic Energy of a single particle=
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Since the number of particles (at 
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, then the kinetic energy of these particles is:
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Now the total thermal (i.e. translational) kinetic energy of species s at 
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 and time t (per unit volume) is:
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Where we have used equation (10) and have integrated equation (12).  (Note that
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, time t) per unit volume is defined as:
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Thus (13) can also be written as:
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Fluxes

Let 
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 be some property of species s [mass,
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For a single particle through an element of area 
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Flux of 
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The total flux for all particles through 
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 is given by:
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Where we have express fs in terms of 
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will be given below).  In (16), the term in () is just the sum of all fluxes due to particles of all velocities (where position 
[image: image69.wmf]x

v

in 
[image: image70.wmf](,,)

s

fwxt

vv

 is at or near 
[image: image71.wmf]ds

v

).
From (14), (16) can be expressed as:


Flux=
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 EMBED Equation.DSMT4  [image: image73.wmf]ss
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We will call 
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 the flux vector, where:
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Particle flux (
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Mass flux (
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Note that total mass flux is given by:
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We will define average velocity (relative to lab frame) of species s as:
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Thus from (21) and (22):
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Mass average velocity=
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 =’bulk velocity’
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Thermal velocities (velocity relative to bulk velocity) we can define a particles thermal velocity relative to the mass average velocity:
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Or relative to the average velocity of species s:
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(Where 
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 is particles velocity relative to lab frame).  The distribution function fs can be expressed in terms of 
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Exercise 1:
Show that
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 EMBED Equation.DSMT4  [image: image93.wmf]
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Thus, (*) can be expressed as:
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Exercise 2:  Show that 
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c

v

 is the difference between the species average velocity (
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) and the mass average velocity (
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Note that 
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 is called the diffusion velocity.  This definition recognizes that any difference between the average velocity of s (
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Exercise 3:  Show that 
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Exercise 4: Show that since
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 (refer to exercise 3).  Thus the sum of all the specie diffusion fluxes is always zero.

Electrical current= charge flux
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= Total charge flux (current) due to motion of all charged species
(29)

Alternative form of (28):
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Alternative form of (29):
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=current due to diffusion (conduction) + current due to convection
(29a)
Where:
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Momentum Flux 
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Exercise 5: Starting with the definition momentum flux of s = 
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 where the term on the right is a dyadic.
For simplicity, let’s use shorthand notation to represent the triple integral (
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And 
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We can attach physical meaning to each term in the last equation:



[image: image139.wmf]s

vv

r

vv

= partial fraction of total mass-average momentum (=
[image: image140.wmf]vv

r

vv

)



[image: image141.wmf]ss

vv

r

vv

= diffusion at moment flux



[image: image142.wmf]ss

vv

r

vv

= moment flux due to diffusion



[image: image143.wmf]s

cc

r

vv

=see below

Note: word definitions of 2nd and 3rd terms are somewhat arbitrary.  These will drop out when we sum all specie momentum fluxes to obtain overall moment flux.

The last term is the momentum flux component due to the random motion of species s; it is thus interpreted as the partial stress tensor of species s.
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Or in index notation:
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If we assume that species s behaves as an ideal gas (i.e. no forces between individual particles negligible overall particle volume) then:
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Total moment flux is obtained by summing (30*) over all species in plasma:


T.M.F.= 
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Where 
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Or
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Where [I] is the identity matrix (all off-diagonal terms =0, all on-diagonal terms =1).

Energy Flux: 
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Energy Flux:
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Energy Flux (con’t): 
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