
Section H7: Frequency Response of Op-Amp Circuits 
 
In the previous sections, we have looked at the frequency response of single 
and multi-stage amplifier circuits using BJTs and FETs. We’ve seen how the 
high frequency cutoff is controlled by internal device capacitances, and the 
low frequency cutoff is determined by external capacitive components. We’re 
going to finish up this section of our studies by looking at the frequency 
response of circuits that utilize our friendly IC, the operational amplifier. 
 
Before we get started in earnest, recall the difference between open loop 
and closed loop operation: 
 

 open loop operation means that there is no feedback between the output 
and the input. The gain of the op-amp device under this condition is 
defined as the open loop gain that we’ve been calling Go. 

 closed loop on the other hand, involves some sort of feedback 
mechanism between the output and the input. So far, we’ve only looked 
at negative feedback, but positive feedback is also used (but we’ll get into 
that shortly). Gain under closed loop conditions is denoted by the letter 
“A” in our text with a subscript that defines the gain type – i.e., voltage 
gain is Av, current gain is Ai and power gain is Ap. 

 
With that brief (and 
cursory) review under our 
belts, a typical open-loop 
frequency response plot is 
shown in Figure 10.25 and 
is reproduced (slightly 
modified) to the right. In 
this figure, voltage gain is 
used as an example, with 
the vertical axis expressed 
in decibels (dB) and the 
corresponding closed loop 
gain noted in blue (i.e., 
80dB=104 V/V, etc.). The 
horizontal axis in this figure 
is frequency in Hertz 
(cycles per second) using a logarithmic scale. For this first order system 
(indicated by the -20 dB/decade rolloff), the bandwidth is the upper break 
frequency (also called the corner frequency, half-power frequency, …) is 
defined as the point at which we make the -3 dB correction from the straight 
line approximation.  
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An important characteristic of this figure is that the gain-
bandwidth product (GBP) is constant, and is 106 for this 
particular example as shown in Table 10.1 of your text and 
to the right. Note that this example is characteristic of a 
741 with an open loop gain of 105. Since a logarithmic plot 
never goes to zero, and the GBP must remain constant, the 
lowest frequency where this is true (10 Hz in this case) is 
considered the zero frequency point. 
 
The response of Figure 10.5 is typical of a general-purpose single roll-off op-
amp such as the 741. Back in Section G5, it was mentioned that the 741 
includes an internal compensation through an on-chip RC network. This form 
of fixed compensation is a technique that modifies the open-loop frequency 
response characteristic in order to improve 
performance and stability (hang on, we’ll get to 
stability shortly).  
 
 
Specifically with regard to an RC compensation 
network, such as is given in Figure 10.26 and to the 
right, the voltage transfer function may be written as 
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where the time constant, τ, is equal to RC. The RC network has a single pole 
at a radian frequency of ω=1/τ=1/RC. When the RC compensation network is 
used in an op-amp, the gain decreases at with a slope of –20 dB/decade for 
frequencies greater than ω. The 741 uses such a single pole fixed 
compensation network that is built into the device and is the cause of the 
frequency response illustrated in Figure 10.25. The family of curves in this 
figure may be approximated by 
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where Go is the dc open-loop op-amp gain and ωo is the op-amp corner 
frequency defined by the RC network. Note: In general, manufacturer’s data 
sheets will show the amplitude and phase response of a particular op-amp 
under certain operating conditions. 
 



A typical non-inverting op-amp configuration 
is shown in Figure 10.27 and is given to the 
right. Note that we have changed the purely 
resistive notation of circuit components to the 
more general impedance notation for the 
feedback and inverting input. Using our ideal 
approximation that the currents into the op-
amp terminals are zero, or i+=i-=0, we can 
write the node equation at v- as follows: 
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and we can see by inspection that v+=vin. 
 
Using the gain relationship developed last semester and substituting in the 
above expressions for v+ and v-, we have 
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Finally, rearranging the above equation, we can get an expression for the 
output voltage, vo 
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If we define a term (gamma) to be 
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the closed loop gain, vo/vin, becomes (found by rearranging Equation 10.83 
and using Equation 10.84) 
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which approaches 1/γ for low frequencies if Go is very large. 
 



If the frequency dependent expression of Equation 10.80 for G(s) is 
substituted for Go in Equation 10.85, we get 
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Note: I will try to be consistent, but in case I forget Av means Av(s) (Ai 
means Ai(s), etc.) if frequency dependence is involved. 
 
If the dc gain, Go, is very large we can assume that Goγ >> 1 for reasonable 
values of ZA and ZF. Equation 10.87 may then be reduced to 
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This gain equation has a scaling factor of 1/γ and contains a single pole at  
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where RA and RF would replace ZA and ZF if the circuit components were 
purely resistive instead of reactive. It can be shown that the bandwidth the 
inverting configuration using single-pole compensation is identical. 
 
Mathematically we can show that, for large open-loop gains, the closed-loop 
gain bandwidth product is constant by 
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So, for single-pole compensation, the gain bandwidth product is constant for 
the op-amp. The GBP tells us that as the closed-loop gain is increased, the 
bandwidth must decrease so that the product remains constant. This inverse 
relationship between gain and bandwidth may be an important tradeoff 
when designing op-amp circuits. 
 
Phase Shift 
 



For an ideal op-amp, there was no phase shift for the non-inverting 
configuration and the phase shift between input and output for the inverting 
configuration was determined to be 180o (since cos180o=-1). For a practical 
op-amp, the phase shift is dependent on the frequency of the input signal. 
For example, an inverting configuration has a phase difference is 180o at dc. 
The angle will decrease as the frequency of the input signal increases due to 
the contribution of the pole(s) of the transfer function. At high frequencies, 
the phase difference approaches zero and a portion of the output signal is 
fed back to the input in phase with the input. This changes the feedback 
mechanism from negative to positive (which we will get into in the next 
section) and the amplifier may become unstable or marginally stable (in the 
marginally stable case, it exhibits behavioral characteristics of an oscillator). 
 
This potentially undesirable condition is avoided by internal frequency 
compensation or by including an external capacitor. In either case, since 
oscillation will not occur with positive feedback as long as the gain is less 
than unity, the strategy is to force the op-amp to have a gain of less than 
one at frequencies where the phase difference between input and output 
approaches zero.  
 
Slew Rate 
 
Ideally, the output of a non-inverting op-amp circuit would be a perfect step 
function for a step input. However, since the formation of a step input 
requires essentially infinite frequencies, and the practical op-amp has a 
response that is frequency dependent, we cannot realize an ideal output. 
This characteristic of op-amps, referred to as slew rate limiting, causes 
distortion of the output signal and is a figure of merit for the device.   
 
Figure 10.30a (given to the right) 
illustrates the non-inverting 
configuration using purely resistive 
components and satisfying the bias 
balance condition. Equation 10.95 of 
your text is simply a repeat of Equation 
10.88 and is given by 
 

( )ooGs ωγ+1
1

in

o
v sv

sv
sA

γ
==

)(
)(

)( , where 

 
 



A

FFA

A

R
RRR

R

+
=

+
=

1

1γ ,  (Equation 10.95) 

 
so that the low frequency gain, 1/γ=1+RF/RA and the gain bandwidth product 
is Goωo as derived earlier. 
 
If we apply the unit step function, as shown 
to the right and in Figure 10.30b, the input to 
the op-amp may be defined as  
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where V is the magnitude of the input signal 
and the unit step, u(t) is defined by  
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Using Laplace transform methods, the input Vu(t) becomes V/s, where s is 
the complex frequency. Solving Equation 10.95 for vo(s) and substituting in 
the expression for vin(s), we obtain 
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Using partial fraction expansion (if you have questions about this 
mathematical tool, let me know) and converting back to an expression in 
time, we get 
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Recalling that the slope of a function is the derivative with respect to the 
independent variable (time in this case), we can define the initial slope of 
the output waveform (at t=0) to be 
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Note! This result, which is illustrated in Figure 10.30c (below and to the left), 
is valid for linear operation only. This means that the magnitude of the 



input (V) must be sufficiently small so that the op-amp does not saturate.  If 
the magnitude of the input is large enough to cause the op-amp to saturate, 
the output response will resemble Figure 10.30d (below and to the right). In 
Figure 10.30d, note that the initial slope of the output response curve is less 
than that predicted by the linear theory. The inability of the op-amp output 
to rise as fast as the linear theory predicts is defined as slew rate limiting.  
 

 
 
In Figure 10.30d (above, right) the op-amp is said to be slewing, which 
occurs when the initial slope of the vo(t) response is less than VGoωo. When 
the op-amp is slewing, the initial slope of the output response is defined as 
the slew rate: 
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The slew rate for a particular op-amp is usually specified in the 
manufacturer’s data sheets in volts per microsecond at unity gain. The slew 
rate is related to the power bandwidth, fp, which is defined as the 
frequency at which a sinusoidal output, at rated output voltage, begins to 
exhibit distortion. Therefore, for a rated output voltage Vr and a slew rate of 
SR, the power bandwidth is found by 
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If the output voltage is less than Vr, slew rate distortion begins at a 
frequency that is higher than fp. 
 
Note that all equations derived for Figure 10.30 may also be applied to a 
unity gain buffer by letting RA→∞ since this will make 1/γ equal to one. 
 



Designing Amplifiers Using Multiple Op-Amps 
 
We now have all the tools to design amplifiers requiring more than one op-
amp. In addition to the basic electrical characteristics of the op-amp, certain 
properties such as the input resistance specified for each terminal, 
bandwidth, output resistance, CMRR, PSRR, and the slew rate may be 
important in the selection of an appropriate device and the successful design 
of an amplifier system. Other considerations in the design of multiple op-
amp circuits include: 
 

 The gain per stage. This is determined by dividing the gain-bandwidth 
product (GBP) of the selected op-amp by the required bandwidth. This 
will also tell you the minimum number of gain stages required to meet 
any gain specification. 

 Determine which inputs are negative and which are positive. This defines 
whether connections are made to the inverting or non-inverting terminal 
of the op-amp. 

 If the required input resistance is larger than the value of the coupling 
resistor, the input voltage must be fed to the non-inverting terminal of 
the op-amp, since the input resistance to the inverting terminal is simply 
the value of the coupling resistance used (see Section G10 for specifics). 

 At times, isolation of various sources in the circuit and phase relationships 
may become important. 


