Section E4: (Some) Other Op-Amp Applications

In the previous section, we concentrated on using the op-amp to create an output that was a linear combination of single or multiple inputs applied to the inverting and/or non-inverting terminals. In this last section of our introduction to operational amplifiers, we’re going to briefly discuss some other cool things this IC can do.

Negative Impedance Circuit

Up to now, you’ve been told that there is no such thing as a negative resistance, right? Well, it turns out that the op-amp can be configured in such a way that it essentially cancels out unwanted positive resistances (or impedances) by producing what looks like a negative input resistance (or impedance).

The negative impedance circuit of Figure 2.17 is reproduced to the right. In this figure, R_A is the equivalent resistance at the inverting terminal; i.e., $R_A = R_a || R_b || ... || R_{\text{final}}$. Following our analysis procedure for ideal op-amps:

Write the KCL equation at the inverting terminal, v_-, using $i_-=0$.

$$\frac{0-v_-}{R_A} + \frac{v_a - v_-}{R_F} = i_- = 0$$

Write the KCL equation at the non-inverting terminal, v_+, using $i_+=0$.

$$i_in + \frac{v_a - v_+}{R} = i_+ = 0, \text{ where } v_+ = v_{in}$$

Set $v_- = v_+$ and solve for the desired closed-loop gains (or resistor values or whatever the problem is asking for).

In this case, we’re interested in R_{in}, where $R_{in} = v_{in}/i_{in}$. Substituting v_+ for v in the first equation above and solving both equations for v_o,

$$v_o = \left(1 + \frac{R_F}{R_A}\right)v_{in}, \quad v_o = v_{in} - R_i n$$
Setting these two expressions for v_o equal to each other and collecting terms:

$$v_o = \left(1 + \frac{R_F}{R_A}\right)v_{in} = v_{in} - Ri_{in} \quad ; \quad \frac{R_F}{R_A}v_{in} = -Ri_{in}$$

we are ready to define the input resistance, R_{in}:

$$(\text{Equation 2.47})$$

$$R_{in} = \frac{v_{in}}{i_{in}} = -\frac{RR_A}{R_F}.$$

So, by providing feedback from the output to both the inverting and non-inverting terminals, a negative resistance may be developed. Note that if any or all of the external components are impedances instead of simple resistances, a negative impedance may be developed.

Dependent Current Generator

A slight modification of the negative impedance circuit above, in which we set the feedback resistor equal to the equivalent resistance applied to the inverting terminal (i.e., $R_F=R_A$), allows us to create a circuit that produces a load current that is directly proportional to the applied input, but independent of the load resistance.

Using the results of Equation 2.47 and substituting $R_F=R_A$, the input resistance of the portion in the dashed box of the figure above (Figure 2.18a in your text) becomes simply $-R$. Redrawing this figure with the dashed box replaced by $-R$, we get the equivalent circuit shown to the right (Figure 2.18b in your text). Defining an equivalent resistance and solving for i_{in}, we get
\[R_{eq} = R + (-R \parallel R_L) = R + \frac{-RR_L}{R_L - R} = \frac{-R^2}{R_L - R}; \quad i_n = \frac{v_{in}}{R_{eq}} = \frac{v_{in}(R_L - R)}{-R^2}. \]

Expanding the circuit back out and using the current divider rule to solve for the load current \(i_L \):

\[i_L = \frac{(-R)i_n}{R_L + (-R)} = \left(\frac{-R}{R_L - R} \right) \left(\frac{R_L - R}{-R^2} \right) v_n = \frac{v_{in}}{R}. \]

(Equation 2.49)

So, by letting \(R_F = R_A \) in the negative impedance circuit, the load current is independent of the actual load and is directly proportional to the input voltage through the resistance \(R \). This behavior is known as a **voltage-to-current converter**, or a **current generator**.

A simpler version of the voltage-to-current converter is shown to the right (a modified version of Figure 2.20 in your text). The output voltage, \(v_o \), is \(i_L R_L \). Using our ideal op-amp analysis techniques (that should be **very** familiar by now!), we get

\[v_+ = v_{in} = v_- \]
\[v_o = i_L R_1 = v_- = v_{in}. \]

and, solving for the load current, \(i_L = \frac{v_{in}}{R_1} \).

Although this circuit once again produces a current that is directly proportional to the input and independent of the load resistance, there is a practical concern with this configuration. Note that, unlike the first current generator circuit presented, neither end of the load resistor is grounded. This is known as a floating ground and may result have undesirable effects on the output signal.

A third incarnation of the voltage-to-current converter that allows grounding of the load resistor is shown to the right but requires two inputs, \(v \) and \(v_{in} \) (Figure 2.21 in your text).
Analyzing the circuit by writing KCL equations at \(v_1 \) and \(v_2 \), with currents going into the node defined as positive:

\[
\frac{v - v_+}{R_1} + \frac{v_+ - v_-}{R_2} = 0; \quad v_- = \frac{R_2 v + R_1 v_0}{R_1 + R_2}
\]

\[
\frac{v_{in} - v_+}{R_1} + \frac{v_+ - v_+}{R_2} - i_L = 0; \quad v_+ = \frac{R_2 v_{in} + R_1 v_0 - R_1 R_2 i_{in}}{R_1 + R_2}
\]

Setting \(v_+ = v_- \), canceling the common denominator and the \(R_1 v_0 \) term, we get \(R_2 v = R_2 v_{in} - R_1 R_2 i_{in} \). From this simplified expression, we can derive the expression for the load current:

\[
i_L = \frac{v_{in} - v}{R_1}. \quad \text{(Equation 2.54)}
\]

So... we have again removed any dependence of the load current on the load resistance. The distinction of this circuit configuration is that we now have a load current that is proportional to the difference between two inputs. Note that if \(v = 0 \), we’re back to the first circuit we looked at.

OK, that’s enough of this function. Let’s move on...

Current-to-Voltage Converter

We’ve done the voltage-to-current converter way past enough, so let’s go the other way for a while. The circuit of Figure 2.19 in your text, and reproduced to the right, is defined as a **current-to-voltage converter** by your author. Note that this is a simple **inverting amplifier with unity gain** from the previous section of study.

Analyzing this circuit by using \(i_{in} \) instead of \((v_{in} - v_+)/R \) at the inverting terminal, we can see that the output voltage is directly proportional to the input current through the resistance \(R \), or

\[
v_o = -i_{in} R.
\]